
~ )  Pergamon 
Int. J. Heat Mass Transfer. Vol. 41, No. 10, pp. 1219-1222, 1998 

© 1998 Elsevier Science Ltd. All rights reserved 
Printed in Great Britain 

0017-9310/98 $19.00+0.00 

PII  : S0017-9310(97)00206-8 

Time-difference schemes with spectral-like 
resolution 

LUN-SHIN YAO 
Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287, 

U.S.A. 

(Received 18 February 1997 and in final form 10 July 1997) 

Abstract--An efficient time-difference scheme is introduced for spectrum or finite-difference methods. The 
time step of the scheme can be determined by the required resolution relative to the frequencies associated 

with the physics of the problems. © 1998 Elsevier Science Ltd. 

INTRODUCTION 

Many physical phenomena involve traveling waves 
with a wide range of wave lengths and frequencies. 
Typical examples are turbulent  flows and heat trans- 
fer, microscale heat transfer, Solar winds, and for- 
mations of planets. An acceptable numerical model 
must be able to resolve all relevant scales in order to 
accurately simulate physics. Spectral methods can be 
used to provide the required spectral resolution for 
space derivatives, but  are impractical for time deriva- 
tives. Lele [1] has suggested compact finite-difference 
schemes with spectral-like space resolution. On the 
other hand, an efficient time-resolution scheme rela- 
tive to the frequencies associated with the physics has 
never been proposed and discussed in the literature. 
Such a method is in demand for an accurate numerical 
simulation of unsteady physics. On this note, we will 
follow the principle used by Lele to develop efficient 
time-difference schemes for spectral methods and 
finite-difference methods. 

A space discretization method usually results a non-  
linear ordinary differential equation as 

df 
dt = F( t , f ) .  (1) 

The func t ionf i s  a real dependent variable for a space 
finite-difference method, or it can be a complex ampli- 
tude function for spectral methods [2], and a complex 
amplitude density function for spectral-eigenfunction 
method [3, 4]. In Section 2, a time-difference scheme 
suitable for spectral methods is presented, and its res- 
olution characteristics are compared with commonly 
used time advancing schemes, such as Adams-Bash- 
ford and Adams-Moul ton  methods. The resolution 
characteristics, as defined by Lele, are the accuracy 
with which the difference approximation represents 
the exact result over the full range of frequencies that 
can be realized for a given time step. In Section 3, a 
time advancing scheme is suggested for finite-differ- 
ence methods. 

TIME ADVANCING SCHEME FOR SPECTRAL 
METHODS 

Equation (1), after being discretized, can be in the 
form 

L-L- ,  -L-L-~ L-L-3 
h + o ~ + c  

= a f , + f l f ' , - , + z f ' , _ 2 + a f ' ~ _ 3  (2) 

where h is the time step, the subscript indicates the 
time level, and f~, = F(t , , f , )  denotes the approxi- 
mat ion of the time derivative of the function f The 
relations between the coefficients b, c and or, fl, X, 6 
are derived by matching the Taylor series coefficients 
at time step n of various orders. The first unmatched 
coefficient determines the formal truncation error of 
the approximation in equation (2). These constraints 
are : 

1 + b + c = ~ + fl + • + 6 (first order) (3) 

1 + 2 b + 3 c  = 2 ( f l+2~+36)  (second order) (4) 

1 +22b+32c  = 3(fl+22~+326) (third order) (5) 

Since it is impractical to use a time difference scheme 
of too many multiple steps, we will not  list constraints 
for higher orders. It is obvious that a = 0 is for explicit 
schemes, such as Adams-Bashford methods. A few 
commonly used schemes are summarized below : 

1. The first-order forward Euler (FE) method is, by 
s e l e c t i n g b = e = ~ = ~ = a = 0 ,  a n d f l = l ,  

L-fo+, 
h fn -1 .  

2. The second-order Adams-Bashford (AB2) is by 
b = c = ~ = 6 = 0, and fl = - 1 / 2 ,  ~ = 3/2. 

3. The third-order Adams-Bashford (AB3) is by 
b = c = ~ = 0, and fl = 23/12, ~ = 4/3, 6 = 5/12. 

4. The first-order backward Euler (BE) is by 
b = e = f l = ~ = 6 = O ,  a d c t =  l. 
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5. The second-order Crank-Nicolson (CN) is by 
b = c = z = 6 = 0 ,  a n d ~ = f l = l / 2 .  

6. The third-order Adams-Moul ton  is (AM3) by 
b = c = 3 = 0 ,  a n d ~ = 5 / 1 2 ,  f l = 2 / 3 ,  Z = - 1 / 1 2 .  

The resolution characteristics of the above schemes 
can be studied by a Fourier analysis. If  i = ~ and 

f ,  = e i°~`o (6) 
then 

aL 
d t  - i w f ,  and f~, = i~o~, (7) 

where ~o' is the circular frequency calculated by the 
difference scheme, since f is only an approximation 
of the time derivative. The relation between the 
approximate frequency co' and the exact frequency 
can be found by substituting equation (6) into equa- 
tion (2) and using equation (7). It is 

C 
( 1 -  e-'~'h) + ~(1 -- e-'2"h) + ~(1--e  -'3°'h) 

~o'h = -- i 
ot + f i e  - i~h  + x e  - i z~h  + f i e -  3~h 

(8) 

The amplitude and the phase angle of hoJ' are plotted 
in Figs. 1 and 2 as function of&o. The physical mean- 
ing of hoJ can be interpreted as a dimensionless time 
step normalized by the maximum frequency that the 
numerical mode must accurately predict. The time 
step, hoJ of the explicit methods such as FE, AB2 and 
AB3 can be set no more than 0.4. Among them, AB2 
is the least accurate one and its time step should not  
be larger than 0.3. Since the shortest period Tmin = 
2~/co . . . .  h cannot  be larger than 6% of Tmi,. This is a 
rather severe restriction in transient computations. 
The acceptable value of h¢o for implicit methods is 
about 0.5, slightly larger. On the other hand, CN and 
AB3 can generate spurious error of higher frequencies. 
This likely causes unstable computation.  

Two spectral-like schemes are also plotted in Figs. 
1 and 2. The explicit scheme (SE2) is a second-order 
scheme. The coefficients are determined from equa- 
tions (3), (4) and three equations of (8) by forcing 
o / =  co = 2.8, 3 and 3.2. They are : 

b =  - 2 . 1 3 8 + i l . 2 9 0 ,  c = 0 . 3 6 6 - i l . 7 2 2 ,  

c~ = 0 /~ = --0.330+i0.285, 

X = --0.569--i0.573, 6 = 0.126--i0.144. (9) 

We found that the values of the determined 
coefficients are relatively insensitive to the selected 
collocation points, so we did not  optimize the col- 
location points. 

The implicit scheme (SI3) is third-order. Solving 
equations (3)-(5) and equation (8) at co' = co = 3.2, 
3.4 and 3.6 results in: 

b = - 1.561 +i l .250,  

= 0.088 + i0.060 

X = - 0.549-/0.238,  

c = 0 .148- i l .002 ,  

fl = - 0.279 + i0.529, 

3 = 0.032-/0.105.  (10) 

Clearly, the schemes (9) and (10) are accurate for 
hoo ~< 3.8. This implies that the time step for these 
schemes can be taken as large as the half of  Tmin- The 
formal order of the scheme is not  a necessary measure 
of the accuracy of the difference scheme. The phase 
angle of the exact solution is zero. The plot of  phase 
angle in Fig. 2 can be viewed as the phase error of the 
methods. The two proposed schemes (9) and (10) are 
free of phase error for substantial range of ho9. It 
is worthy to note that the implicit scheme (10) can 
introduce spurious error of high frequency. Thus, the 
explicit scheme (9) is a more desirable scheme for time 
marching computation.  Since it is a fourth time-step 
method, it requires one to know the initial conditions 
of the three previous time steps that will usually not  
present any difficulty in computation.  
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Fig. 1. Plot of modified frequency vs frequency. 
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Fig. 2. Phase error. 

Two proposed schemes are suitable for equations 
of complex variables resulted by spectral methods. In 
the next section, we will present a scheme for equa- 
tions of real variable. 

TIME A D V A N C I N G  S C H E M E  FOR FINITE- 

DIFFERENCE M E T H O D S  

Following the principle of the last section, the dis- 
cretized form of equation (1), can be casted as 

f , + z - - f , - z  + a f , + l - f , - i  
4h 2h 

= ~ ( f ; + # ( f ; + ,  + f ; - , ) + x ( f ; + z + f ; - = ) .  ( l l )  

Here, we assume that we knowf .+  ~, f . , f ._  ] and f._2 
in order to computef .+ 2. The expansion of the Taylor 
series leads to : 

1 + a  = a + 2 f l + 2 2  (second order) (12) 

4 + a  = 6(f l+4)0 (fourth order). (13) 

The Fourier  analysis gives 

½ sin(2ogh) + a sin(toh) 

to'h - ot + 2flcos(toh) + 2X cos(2toh ) . (14) 

For  fourth time-step methods, we will propose an 
implicit and an explicit scheme of second-order. From 
equation (12), we know that a = c t + 2 f l + 2 Z - 1 .  The 
implicit scheme (IMP2) is obtained by solving equa- 
tion (14) at to' = to = 1, 1.2 and 1.4, and is 

= 1.794 fl = 0.848 ~ = 0.064. (15) 

The explicit scheme (EXP2) is collocating at to' = 1 
and 1.2, and is 

=0 .286  f l=0 .085  ~ = 0 .  

The plots ofhto' in Fig. 3 show that the implicit scheme 
is better and is accurate for hto ~< 2. The explicit scheme 
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Fig. 3. Plot of modified frequency vs frequency. 
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is good for hco ~< 1.2. Both are considerably better 
than the commonly used Adams-Bash  or A d a m s -  
Moul ton marching schemes. 
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